
Fred Vellinga BI Services

SAS Merge SQL Equivalent Object Model
©Fred Vellinga BI Services, (v1.0 April 2019)

Pagina 2 van 16

De macro Ctr+L maakt een streepjes lijst.
De macro Ctr+G maakt een grid/tabel.

1 SAS Merge Equivalent Object Model SQL ..3
1.1 Classes and Objects ..4

2 Class ClsSasColumn ...5
3 Class ClsKeyColumns ..6
4 Class ClsOrderColumns ...7
5 Class ClsSelectColumns ...8
6 Class ClsSasTable ..9
7 Class ClsSasMerge .. 10
8 Appendix A (Additional processing) ... 12
9 Appendix B (Code) ... 13

9.1 SAS test data set .. 13
9.2 PostgreSQL test dataset ... 15

Pagina 3 van 16

1 SAS Merge Equivalent Object Model SQL

The SAS Merge SQL Equivalent Object model simulates the SAS MERGE statement using SQL. It generates

one SQL statement that is equivalent to the SAS merge behaviour. The object model consists of six classes
written in Python with Visual Studio 2017 and tested in PostgreSQL. But it is standard SQL so should work
everywhere. The model looks as follows:

ClsSasMerge ClsSasTable

ClsSelectColumns

ClsKeyColumns

ClsOrderColumns

ClsSasColumn

ClsSasTable

ClsSasColumn

ClsSasColumn

ClsSasColumn

ClsSasColumn

ClsSasColumn

SAS Merge SQL Equivalent Object Model

Six classes:
• Object ClsSasMerge consists of two or more ClsSasTable objects.
• Each ClsSasTable object addresses a table and consists of one

ClsKeyColumns object, one ClsOrderColumns object and one
ClsSelectColumns object. The ClsOrderColumn object is optional.

• A ClsKeyColumns object consists of one or more ClsSasColumn objects.
They are the key (the BY group) of the table.

• A ClsOrderColumns object consists of one ore more ClsSasColumn
objects. Together with the ClsKeyColumns object they sort the table.
Sorting is essential in the SAS MERGE statement.

• A ClsSelectColumns object consists of one ore more ClsSasColumn
objects. They can be the same as the ClasOrderColumns object and are
the output of the total merge statement. (Together with the key columns.)

• A ClsSasColumn object is the name of a column that exists in the table
listed in the ClsSasTable object. The column name can be aliased, but
this makes only sense for the ClsSelectColumns object.

When you feed the returning SQL statement to a SQL data provider you can then iterate through the rows to
do something with the data and you can fully emulate, or come close, the SAS data step technique.

The SAS overlay aspect is not implemented; column names with the same names are not overwritten. Also
the MERGE equivalent without a BY statement is not supported. Also the position of a column in the SELECT

clause is rather fixed.

SAS overlay means that same name columns are over written from right to left. The most right table in the
MERGE statements overwrites columns in the left table having the same name. This means the order of

appearance in the SAS MERGE statement is relevant, just as the ordering of a table.

When you do not want to iterate through the result data set, can also use the returning SQL query as in inner
query:

SELECT Tx.<what_ever>
FROM (

 SELECT <sas_merge_query>) Tx
WHERE <whatever>

Or more flexible, use the WITH clause:

WITH Tx as (

 <sas_merge_query>
),
<any other query>
SELECT Tx.<whatever>
FROM Tx
WHERE <whatever>

Supporting pointers per table (the IN option) are available telling you when there was a match or not. The

WHERE clause can be used to keep only the rows you want. The WITH clause gives you the most power to
further manipulate the data.

The SQL equivalent has no limits. The limits are the data provider and target database.

Pagina 4 van 16

1.1 Classes and Objects

An object is an instance of class. The class is the code, the object is the instance in memory. You can have
unlimited instances, or objects, of the same class in memory, all containing different information. Regard an
object as a pointer variable pointing to a memory location.

Some objects in this model are collections of other objects. You can see that as parent-child relations. Because
all child objects are referenced by value to the parent object you can re-use an object as many times as you
like. Any parent object never references to the same child object, even when all child objects originated from
one object. All objects are unique.

A class consists of a constructor (initializes the object variable), properties (variables local to the class which
can be set and read), methods (the functions in a class) and events, also referred to as a call-back function.
Not all of these elements are necessary in a class. Only the constructor is mandatory.

Pagina 5 van 16

2 Class ClsSasColumn

The SasColumn object defines a column name you want to use in your MERGE statement. A column can be

used in the BY part (in this model called the key), in the ORDER part of the table (table sorting is essential)

and in the output part.

When next is your MERGE statement:

DATA Tmerge (keep=col1 col2 col3 d1 d2 d3);
 MERGE Ta(in=A) Tb(in=B) Tc(in=C)
 BY col1 col2 col3
 <body>
RUN;

then you have to be sure the three tables are sorted as you wanted. The minimal sort is by col1-col3, but there
might be more. And you must know at forehand what your output columns will be. The SQL equivalent
does the sorting for you, and the rest, but you have to tell the model which columns you will take from the
tables for whatever purpose; key, sort or output. For that you use the SasColumn class.

Constructor pName The column name as it exists in a table you are using.
 pAlias The column alias name as you want the column be named in the output.

Only relevant for the output part.
 (The constructor parameters are optional.)

Properties p_error_msg Returns the error message generated by this class.
 p_name Set or returns the column name as it exists in a table you are using.
 p_alias Set or returns the column alias name as you want the column be named in

the output. Only relevant for the output part.

Methods This class has no methods.

Events Event_handler This event is fired when you enter wrong data types in the property values

when setting them. It is a sort of debugging feature. Once fired it executes
the call back function specified here.

Example (without events):

col = ClsSasColumn()
col.p_name = "k1"

Pagina 6 van 16

3 Class ClsKeyColumns

The KeyColumn object contains a collection of SasColumn objects and forms the BY part of the MERGE

statement for a given table that is part in the MERGE statement. Because this is SQL, there is no need that the

key or BY variable names in the tables must have the same name.

Because this class is a collection class, in Python called a sequence class, the class has more elements then the
SasColumn class. This is needed to iterate through the collection. Here I list only the elements necessary to
turn on the SQL functionality.

Constructor pCol A SasColumn object. It is a pointer variable. But that is transparent. Fastest

method to add one column to this object.
 (The constructor parameters are optional.)

Properties p_error_msg Returns the error message generated by this class.
 p_columns Returns the collection (a list) of SasColumn objects.
 p_index Returns the index of the SasColumn object in the collection.
 p_count Returns the column count; the number of SasColumn objects in this object.

Methods Append(Obj) Append a SasColumn object to this collection. The append order is

important. When you want to do BY processing using BY k1 k2, you first
have to add k1 and then k2. The other way will also work but then you may
get unintended output. When you initialize this object via the constructor,
you can define a SasColumn also there. That column is then appended.
When you need only one column for this class, that is the fastest method.

 Remove(Obj) Removes the SasColumn object from this collection.

Events Event_handler This event is fired when you enter wrong data types in the method

parameters. It is a sort of debugging feature. Once fired it executes the call
back function specified here.

Example (without events):

col = ClsSasColumn()
keys = ClsKeyColumns()

col.p_name = "k1"; keys.append(col)
col.p_name = "k2"; keys.append(col)

Here you have added two columns (k1 and k2) to the KeyColumn object. You have a collection of two

SasColumn objects. The columns originate from the same SasColumn object but are in the KeyColumn object
unique. (Python supports the ';' character as statement separator.)

Pagina 7 van 16

4 Class ClsOrderColumns

The OrderColumn object contains a collection of SasColumn objects that are columns needed to additional sort
the table. It is an optional object. Together with the KeyColumn object the OrderColumn object orders the table.
So you can regard them as additional to the key columns. The class is identical to class ClassKeyColumns.

Constructor pCol A SasColumn object. It is a pointer variable. But that is transparent. Fastest

method to add one column to this object.
 (The constructor parameters are optional.)

Properties p_error_msg Returns the error message generated by this class.
 p_columns Returns the collection (a list) of SasColumn objects.
 p_index Returns the index of the SasColumn object in the collection.
 p_count Returns the column count; the number of SasColumn objects in this object.

Methods Append(Obj) Append a SasColumn object to this collection. The append order is

important. When you want to do additional column ordering with d1, d2,
you first have to add d1 and then d2. The other way will also work but then
you may get unintended output.

 Remove(Obj) Removes the SasColumn object from this collection.

Events Event_handler This event is fired when you enter wrong data types in the method

parameters. It is a sort of debugging feature. Once fired it executes the call
back function specified here.

Example (without events):

col = ClsSasColumn()
keys = ClsKeyColumns()
order = ClsOrderColumns()

col.p_name = "k1"; keys.append(col)
col.p_name = "k2"; keys.append(col)
col.p_name = 'd1'; order.append(col)
col.p_name = 'd2'; order.append(col)

Here you have added two columns (k1 and k2) to the KeyColumn object and two columns (d1 and d2) to the
OrderColumn object. You now have two collections each having two SasColumn objects. The columns
originate from the same SasColumn object but are unique in both collections.

Pagina 8 van 16

5 Class ClsSelectColumns

The SelectColumn object contains a collection of SasColumn objects that are columns that will be outputted.
The class is identical to class ClassKeyColumns.

Constructor pCol A SasColumn object. It is a pointer variable. But that is transparent. Fastest

method to add one column to this object.
 (The constructor parameters are optional.)

Properties p_error_msg Returns the error message generated by this class.
 p_columns Returns the collection (a list) of SasColumn objects.
 p_index Returns the index of the SasColumn object in the collection.
 p_count Returns the column count; the number of SasColumn objects in this object.

Methods Append(Obj) Append a SasColumn object to this collection. The append order is

important. When you do additional column ordering with d1, d2, you first
have to add d1 and then d2. The other way will also work but then you may
get unintended output.

 Remove(Obj) Removes the SasColumn object from this collection.

Events Event_handler This event is fired when you enter wrong data types in the method

parameters. It is a sort of debugging feature. Once fired it executes the call
back function specified here.

Example (whithout events):

col = ClsSasColumn()
keys = ClsKeyColumns()
order = ClsOrderColumns()
select = ClsSelectColumns()

col.p_name = "k1"; keys.append(col)
col.p_name = "k2"; keys.append(col)
col.p_name = 'd1'; order.append(col); select.append(col)
col.p_name = 'd2'; order.append(col); select.append(col)

Here you have added two columns (k1 and k2) to the KeyColumn object, two columns (d1 and d2) to the

OrderColumn object and two columns (d1 and d2) to the SelectColumn object. The SelectColumn object

contains the same columns as the OrderColumn object. You now have three collections each having two
SasColumn objects. The columns originate from the same SasColumn object but are unique in all three
collections.

Pagina 9 van 16

6 Class ClsSasTable

The SasTable object defines a table with its key columns, order columns (optional) and select columns. All
what you do is assigning previously defined objects to this object.

Constructor pName The table name.
 pKeys A KeyColumn object. It is a pointer variable. But that is transparent. Fastest

method to add the KeyColumn object to this object.
 POrder A OrderColumn object. It is a pointer variable. But that is transparent. Fastest

method to add the OrderColumn object to this object.
 pSelect A SelectColumn object. It is a pointer variable. But that is transparent. Fastest

method to add the SelectColumn object to this object.
 (The constructor parameters are optional.)

Properties p_error_msg Returns the error message generated by this class.
 p_keys Set or returns the KeyColumn object. It is a pointer variable.
 p_order Set or returns the OrderColumn object. It is a pointer variable.
 p_select Set or returns the SelectColumn object. It is a pointer variable.
 (Using the properties you can also change the values.)

Methods This class has no methods.

Events Event_handler This event is fired when you enter wrong data types in the method

parameters or property values. It is a sort of debugging feature. Once fired
it executes the call back function specified here.

Example (with events):

def consume_class_event(pCls):
 """ The callback function """
 if pCls.p_error_msg != None:
 print(pCls.p_error_msg)

col = ClsSasColumn()
e.sas_col_event += consume_class_event(col)
col.event_handler(consume_class_event)

keys = ClsKeyColumns()
e.sas_key_event += consume_class_event(keys)
keys.event_handler(consume_class_event)

order = ClsOrderColumns()
e.sas_order_event += consume_class_event(order)
order.event_handler(consume_class_event)

select = ClsSelectColumns()
e.sas_select_event += consume_class_event(select)
select.event_handler(consume_class_event)

table = ClsSasTable()
e.sas_table_event += consume_class_event(table)
table.event_handler(consume_class_event)

merge = ClsSasMerge()
e.sas_merge_event += consume_class_event(merge)
merge.event_handler(consume_class_event)

col.p_name = "k1"; keys.append(col)
col.p_name = "k2"; keys.append(col)
col.p_name = 'd1'; order.append(col); select.append(col)
col.p_name = 'd2'; order.append(col); select.append(col)
table.p_name = "Ta"
table.p_keys = keys
table.p_order = order
table.p_select = select
merge.append(table)

Here you have specified one table, ready to get assigned to the SasMerge object.

Pagina 10 van 16

7 Class ClsSasMerge

The SasMerge object defines all tables involved in the merge. This class returns the SQL statement. The SQL
statement can be generated in a sorted and non-sorted variant. The sorted variant might be handy when you
want to iterate through all the rows. But when you want to do additional where filtering you have to turn

the sort order off.

Default the SQL MERGE statement always output the key parameters, using the names as listed by the first
table, the individual sort pointers of the table, and the overall sort pointer of the SQL MERGE statement.

Constructor pTable A SasTable object. It is a pointer variable. But that is transparent. Fastest

method to add one table to this object.
 (The constructor parameters are optional.)

Properties p_error_msg Returns the error message generated by this class.
 p_tables Returns the collection (a list) of SasTable objects.
 p_index Returns the index of the SasTable object in the collection.
 p_count Returns the column count; the number of SasTable objects in this object.
 P_orderby Set or returns the flag that tells if the query must be returned sorted or

not. It adds ORDER BY Tm.p to the query. Tm.p is the alias name for the

overall sorting pointer of the table.
 p_slq_merge Return the SQL MERGE statement. First the method get_sql_merge() must

have been invoked.

Methods Append(Obj) Append a SasTable object to this collection. The append order is

important.
 Remove(Obj) Removes the SasTable object from this collection.
 get_sql_merge() return the SQL MERGE string.

Events Event_handler This event is fired when you enter wrong data types in the method

parameters. It is a sort of debugging feature. Once fired it executes the call
back function specified here.

A complete example (with events) that gives three different methods of defining a table.

col = ClsSasColumn()
e.sas_col_event += consume_class_event(col)
col.event_handler(consume_class_event)

keys = ClsKeyColumns()
e.sas_key_event += consume_class_event(keys)
keys.event_handler(consume_class_event)

order = ClsOrderColumns()
e.sas_order_event += consume_class_event(order)
order.event_handler(consume_class_event)

select = ClsSelectColumns()
e.sas_select_event += consume_class_event(select)
select.event_handler(consume_class_event)

table = ClsSasTable()
e.sas_table_event += consume_class_event(table)
table.event_handler(consume_class_event)

merge = ClsSasMerge()
e.sas_merge_event += consume_class_event(merge)
merge.event_handler(consume_class_event)

First table
col.p_name = "k1"; keys.append(col)
col.p_name = "k2"; keys.append(col)
col.p_name = 'd1'; order.append(col); select.append(col)
table.p_name = "Ta"
table.p_keys = keys
table.p_order = order
table.p_select = select

Pagina 11 van 16

merge.append(table)

Second table
table.p_name = "Tb"
table.p_keys[0].p_name = "k3"
table.p_keys[1].p_name = "k4"
table.p_order[0].p_name = "d2"
table.p_select[0].p_name = "d2"
merge.append(table)

Third table
table = ClsSasTable()
keys = ClsKeyColumns()
order = ClsOrderColumns()
select = ClsSelectColumns()
col = ClsSasColumn(pName="k5")
keys.append(col)
col = ClsSasColumn(pName="k6")
keys.append(col)
col = ClsSasColumn(pName="d3")
order.append(col)
col = ClsSasColumn(pName="d3")
select.append(col)
table.p_name = "Tc"
table.p_keys = keys
table.p_order = order
table.p_select = select
merge.append(table)

sql = merge.get_sql_merge() # make the SQL statement
print(sql)

Pagina 12 van 16

8 Appendix A (Additional processing)

Assume you merge four tables, as listed by the schema below:
Table Ta Tb Tc Tc
Key k1, k2, k3 ka, kb, kc x, y, z col1, col2, col3
Order d3 d_8, d_9 d1 d5
Select d1, d2, d3 d1, d2, d3 d1, d2, d3, d4 d1

Table alias T0 T1 T2 T3

The SELECT clause is then as follows:

SELECT Tm.p, Tm.k1, Tm.k2, Tm.k3,
 Tm.p_0, Tm.p_1, Tm.p_2, Tm.p_3,
 T0.d1, T0.d2, T0.d3,
 T1.d1, T1.d2, T1.d3,
 T2.d1, T2.d2, T2.d3, T2.d4,
 T3.d1

Aliasing of the involved tables is done automatically. Aliasing of the select columns must be defined in the
model. The order columns play an important role inside the query, but are not outputted as long as you do
not select them.

If you want only output rows coming from Ta and Tb you have to add the following where clause to the
statement:

where Tm.p_0 is null
 and Tm.p_1 is not null
 and Tm.p_2 is not null
 and Tm.p_3 is null

When you want do additional processing in the body you have to use the query as an inner query. But as
listed in the introduction, more flexible is to do this:

WITH Tx as (

 <sas_merge_query>
)
SELECT Tx.<whatever>
FROM Tx
WHERE <whatever>

The typical SAS behaviour that you can output the same row multiple times with variations in the data can
be done as follows:

WITH Tx as (
 <sas_merge_query>
)
SELECT Tx.<whatever>
FROM Tx
WHERE <whatever>
UNION ALL
SELECT Tx.<whatever>
FROM Tx
WHERE <whatever>
UNION ALL
SELECT Tx.<whatever>
FROM Tx
WHERE <whatever>

Pagina 13 van 16

9 Appendix B (Code)

The code is packed in ZIP file SasMergePython.zip and contains three modules. The Python code is written
in Visual Studio 2017 and tested on Windows 10.

Modulename Description Dependencies
SasMergeModule.py Contains the six classes as described here. None

ClsPg.py PostgreSQL connection class. I use version 9.4 In my case I have
stored the login credentials in Windows Environment variables.

psycopg2
events

main.py The test code. The startup file in Visual Studio. events

9.1 SAS test data set

*% Unique keys (k1/k2/k3) in all three tables;
*% Take k1 only for non unique key;
data Ta;
 infile datalines;
 input k1 k2 k3 da1 $ da2 $ da3 $;
 datalines;
1 2 1 r1_a_1 r1_a_2 r1_a_3
1 2 2 r2_a_1 r2_a_2 r2_a_3
1 2 3 r3_a_1 r3_a_2 r3_a_3
2 3 4 r4_a_1 r4_a_2 r4_a_3
2 3 5 r5_a_1 r5_a_2 r5_a_3
;
run;

data Tb;
 infile datalines;
 input k1 k2 k3 db1 $ db2 $ db3 $;
 datalines;
1 2 1 r1_b_1 r1_b_2 r1_b_3
1 2 3 r2_b_1 r2_b_2 r2_b_3
2 3 4 r3_b_1 r3_b_2 r3_b_3
3 1 5 r4_b_1 r4_b_2 r4_b_3
4 2 6 r5_b_1 r5_b_2 r5_b_3
4 7 7 r6_b_1 r6_b_2 r6_b_3
;
run;

data Tc;
 infile datalines;
 input k1 k2 k3 dc1 $ dc2 $ dc3 $;
 datalines;
0 2 1 r0_c_1 r0_c_2 r0_c_3
1 2 1 r1_c_1 r1_c_2 r1_c_3
1 2 2 r2_c_1 r2_c_2 r2_c_3
4 7 7 r3_c_1 r3_c_2 r3_c_3
5 8 8 r4_c_1 r4_c_2 r4_c_3
6 9 9 r5_c_1 r5_c_2 r5_c_3
;
run;

proc sort data=Ta out=Ta;
 by k1 k2 k3 da1;
proc sort data=Tb out=Tb;
 by k1 k2 k3 db1;
proc sort data=Tc out=Tc;
 by k1 k2 k3 dc1;
run;

data Dmerge_1;
 merge Ta (in=p1) Tb (in=p2) Tc (in=p3);
 by k1 k2 k3;
run;

data Dmerge_1A;
 merge Ta (in=p1) Tb (in=p2) Tc (in=p3);
 by k1 k2 k3;
 if p1 = 1 and p2 = 1 and p3 = 1;
run;

Pagina 14 van 16

data Dmerge_2;
 merge Ta (in=p1) Tb (in=p2) Tc (in=p3);
 by k1;
run;

data Dmerge_2A;
 merge Ta (in=p1) Tb (in=p2) Tc (in=p3);
 by k1;
 if p1 = 1 and p2 = 1 and p3 = 1;
run;

*% Another case with four tables;
data Ta;
 infile datalines;
 input k1 k2 k3 k4 da1 $;
 datalines;
1 2 3 1 r1_a_1
1 2 3 2 r2_a_1
1 2 3 3 r3_a_1
1 2 3 4 r4_a_1
1 2 3 5 r5_a_1
;
run;

data Tb;
 infile datalines;
 input k1 k2 k3 k4 db1 $;
 datalines;
1 2 1 0 r1_b_1
1 2 3 1 r2_b_1
1 2 4 2 r3_b_1
1 2 5 3 r4_b_1
1 2 6 4 r5_b_1
1 2 7 5 r6_b_1
;

data Tc;
 infile datalines;
 input k1 k2 k3 k4 dc1 $;
 datalines;
0 2 3 1 r0_c_1
0 2 3 2 r1_c_1
1 2 3 3 r2_c_1
1 2 3 4 r3_c_1
1 2 3 5 r4_c_1
1 2 3 6 r5_c_1
;

data Td;
 infile datalines;
 input k1 k2 k3 k4 dd1 $;
 datalines;
1 2 3 1 r1_d_1
1 2 3 2 r2_d_1
1 2 3 3 r3_d_1
1 2 3 4 r4_d_1
1 2 3 5 r5_d_1
1 2 3 6 r6_d_1
1 2 3 7 r7_d_1
1 2 3 8 r8_d_1
1 2 3 9 r9_d_1
1 2 3 10 r10_d_1
;

proc sort data=Ta out=Ta;
 by k1 k2 k3 k4 da1;
proc sort data=Tb out=Tb;
 by k1 k2 k3 k4 db1;
proc sort data=Tc out=Tc;
 by k1 k2 k3 k4 dc1;
proc sort data=Td out=Td;
 by k1 k2 k3 k4 dd1;
run;

Pagina 15 van 16

data Dmerge_1;
 merge Ta (in=p1) Tb (in=p2) Tc (in=p3) Td (in=p4);
 by k1 k2 k3 k4;
run;

data Dmerge_2;
 merge Ta (in=p1) Tb (in=p2) Tc (in=p3) Td (in=p4);
 by k1;
run;

9.2 PostgreSQL test dataset

drop table if exists Ta1;
drop table if exists Tb2;
drop table if exists Tc3;

create table Ta1 (k1 int, k2 int, k3 int, da1 varchar(8), da2 varchar(8), da3 varchar(8));
create table Tb2 (k4 int, k5 int, k6 int, db1 varchar(8), db2 varchar(8), db3 varchar(8));
create table Tc3 (k7 int, k8 int, k9 int, dc1 varchar(8), dc2 varchar(8), dc3 varchar(8));

insert into Ta1 values(1, 2, 1, 'r1_a_1', 'r1_a_2', 'r1_a_3');
insert into Ta1 values(1, 2, 2, 'r2_a_1', 'r2_a_2', 'r2_a_3');
insert into Ta1 values(1, 2, 3, 'r3_a_1', 'r3_a_2', 'r3_a_3');
insert into Ta1 values(2, 3, 4, 'r4_a_1', 'r4_a_2', 'r4_a_3');
insert into Ta1 values(2, 3, 5, 'r5_a_1', 'r5_a_2', 'r5_a_3');

insert into Tb2 values(1, 2, 1, 'r1_b_1', 'r1_b_2', 'r1_b_3');
insert into Tb2 values(1, 2, 3, 'r2_b_1', 'r2_b_2', 'r2_b_3');
insert into Tb2 values(2, 3, 4, 'r3_b_1', 'r3_b_2', 'r3_b_3');
insert into Tb2 values(3, 1, 5, 'r4_b_1', 'r4_b_2', 'r4_b_3');
insert into Tb2 values(4, 2, 6, 'r5_b_1', 'r5_b_2', 'r5_b_3');
insert into Tb2 values(4, 7, 7, 'r6_b_1', 'r6_b_2', 'r6_b_3');

insert into Tc3 values(0, 2, 1, 'r0_c_1', 'r0_c_2', 'r0_c_3');
insert into Tc3 values(1, 2, 1, 'r1_c_1', 'r1_c_2', 'r1_c_3');
insert into Tc3 values(1, 2, 2, 'r2_c_1', 'r2_c_2', 'r2_c_3');
insert into Tc3 values(4, 7, 7, 'r3_c_1', 'r3_c_2', 'r3_c_3');
insert into Tc3 values(5, 8, 8, 'r4_c_1', 'r4_c_2', 'r4_c_3');
insert into Tc3 values(6, 9, 9, 'r5_c_1', 'r5_c_2', 'r5_c_3');

drop table if exists Txa1;
drop table if exists Txb2;
drop table if exists Txc3;
drop table if exists Txd4;

create table Txa1 (k1 int, k2 int, k3 int, k4 int, da1 varchar(8));
create table Txb2 (k1 int, k2 int, k3 int, k4 int, db1 varchar(8));
create table Txc3 (k1 int, k2 int, k3 int, k4 int, dc1 varchar(8));
create table Txd4 (k1 int, k2 int, k3 int, k4 int, dd1 varchar(8));

insert into Txa1 values(1, 2, 3, 1, 'r1_a_1');
insert into Txa1 values(1, 2, 3, 2, 'r2_a_1');
insert into Txa1 values(1, 2, 3, 3, 'r3_a_1');
insert into Txa1 values(1, 2, 3, 4, 'r4_a_1');
insert into Txa1 values(1, 2, 3, 5, 'r5_a_1');

insert into Txb2 values(1, 2, 1, 0, 'r1_b_1');
insert into Txb2 values(1, 2, 3, 1, 'r2_b_1');
insert into Txb2 values(1, 2, 4, 2, 'r3_b_1');
insert into Txb2 values(1, 2, 5, 3, 'r4_b_1');
insert into Txb2 values(1, 2, 6, 4, 'r5_b_1');
insert into Txb2 values(1, 2, 7, 5, 'r6_b_1');

insert into Txc3 values(0, 2, 3, 1, 'r0_c_1');
insert into Txc3 values(0, 2, 3, 2, 'r1_c_1');
insert into Txc3 values(1, 2, 3, 3, 'r2_c_1');
insert into Txc3 values(1, 2, 3, 4, 'r3_c_1');
insert into Txc3 values(1, 2, 3, 5, 'r4_c_1');
insert into Txc3 values(1, 2, 3, 6, 'r5_c_1');

insert into Txd4 values(1, 2, 3, 1, 'r1_d_1');
insert into Txd4 values(1, 2, 3, 2, 'r2_d_1');
insert into Txd4 values(1, 2, 3, 3, 'r3_d_1');
insert into Txd4 values(1, 2, 3, 4, 'r4_d_1');
insert into Txd4 values(1, 2, 3, 5, 'r5_d_1');
insert into Txd4 values(1, 2, 3, 6, 'r6_d_1');

Pagina 16 van 16

insert into Txd4 values(1, 2, 3, 7, 'r7_d_1');
insert into Txd4 values(1, 2, 3, 8, 'r8_d_1');
insert into Txd4 values(1, 2, 3, 9, 'r9_d_1');
insert into Txd4 values(1, 2, 3, 10, 'r10_d_1');

	1 SAS Merge Equivalent Object Model SQL
	1.1 Classes and Objects

	2 Class ClsSasColumn
	3 Class ClsKeyColumns
	4 Class ClsOrderColumns
	5 Class ClsSelectColumns
	6 Class ClsSasTable
	7 Class ClsSasMerge
	8 Appendix A (Additional processing)
	9 Appendix B (Code)
	9.1 SAS test data set
	9.2 PostgreSQL test dataset

